Adsorption and desorption - How to measure with QCM-D
Malin Edvardsson Feb 27, ’18 < 5 min

Adsorption and desorption - How to measure with QCM-D

Adsorption and desorption processes occur everywhere. They play an important role in areas such as surface science, biomaterials, cell and molecular biology, and pharmaceutical development and production, where molecules and nanoparticles interact with various surfaces in different contexts.

Adsorption can be defined as the ‘adhesion’ of molecules from a liquid or gas phase onto a surface. Desorption is the reverse phenomenon, when adsorbed molecules are removed from a surface. QCM-D technology, which is essentially a balance for small masses, can monitor molecular adsorption and desorption processes in real-time by detecting the mass changes following the molecular uptake or release from the surface studied.

Characterizing adsorption and desorption processes on solid surfaces

Depending on the application and objective of the study, it may be relevant to either understand, characterize or optimize the adsorption or desorption events. Either way, it will be relevant to monitor the amount of material that is being added to or leaving the surface, and it may also be relevant to investigate the rate at which the process occurs. Each time material is added to or removed from a surface, there is a corresponding change in mass, which will be detected by QCM-D in real-time.

Example: Evaluating protein adsorption on glass and plastic

As an example, let’s have a look at protein adsorption on two different surfaces, one glass surface and one plastic. As outlined in Figure 1, we follow the steps below.

  1. We run two measurements in parallel, one on glass and one on plastic. The measurements start with the respective surface in a background solution. At this point, the surfaces are bare, which means zero mass (Figure 1A).
  2. Next, we introduce the protein solution and lets it flow over the surface. The QCM-D instrument captures two parameters, frequency and dissipation. The frequency shift represents the mass change in reverse, i.e. a negative shift means mass uptake, and positive shift means mass loss. When the protein reaches the surface, there is a mass uptake on both the glass and plastics surfaces. We note, however, that the adsorption is somewhat faster on the glass surface than on the plastic one (Figure 1B).
  3. After 30 minutes, we rinse to remove any loosely bound protein. Here we see mass loss from both the glass and plastic surfaces (Figure 1C).
  4. At the end of the experiment, we conclude that the final adsorbed amount was larger on the glass than on the plastic surface (Figure 1D).
  Protein_adsorption.png

Figure 1. (Top) Protein adsorption on plastic (PVDF) and glass (borosilicate) measured with QCM-D. (Bottom) Schematic illustration of the protein adsorption process.

Evaluating adsorption and desorption under different conditions

Monitoring the mass as a function of time, evaluating surface interaction processes is straightforward. It is also possible to compare behavior under different conditions by varying for example the concentration, temperature, pH and ionic strength.

In addition to the example shown here, other types of adsorption and desorption events that could be characterized by measuring the mass uptake and mass loss include, for example, surface interaction of surfactants, polymers and nanoparticles.

Download the overview to read more about what information you can obtain with QSense QCM-D.

Overview  Information obtained with QSense QCM-D  Download

 

Related products

   QSense Pro Looking for a companion in large-scale QCM-D analysis? The fully automated  QSense Pro is best fit for the job.
   QSense Analyzer Both fast and flexible, QSense Analyzer enables you to compare several samples  at the same time.

Explore the blog

You have only scratched the surface.

Popular

Archive

View all